Synthesis of Heterocycles. Part VI [1]. Synthesis and Antimicrobial Activity of Some 4-Amino-5-aryl-1,2,4-triazole-3-thiones and their Derivatives

N. F. Eweiss [2], A. A. Bahajaj* and E. A. Elsherbini

Department of Chemistry, University of Kuwait
Kuwait
Received February 18, 1986

4-Amino-5-aryl-1,2,4-triazole-3-thiones I react with acid chlorides to yield 4-acylamino-5-aryl-1,2,4-triazole-3-thiones II. Compounds I also react with methylene iodide, chloroacetonitrile and methyl bromoacetate to give bis-(4-amino-5-aryl-1,2,4-triazol-3-ylthio)methanes III, 4-amino-5-aryl-3-cyanomethylthio-1,2,4-triazoles IV and 4-amino-5-aryl-3-carbomethoxymethylthio-1,2,4-triazoles V, respectively. Compounds V react with hydrazine hydrate to give the corresponding acid hydrazides VI which in turn condenses with acid chlorides and aldehydes to afford respectively 1-[(4-amino-5-aryl-1,2,4-triazol-3-ylthio)acetyl]-2-aroylhydrazines VII and aryl methylene (4-amino-5-aryl-1,2,4-triazol-3-ylthio)acethydrazones VIII. The antimicrobial activities of the above compounds were screened against different strains of bacteria and fungi.

J. Heterocyclic Chem., 23, 1451 (1986).

In continuation of our interest in the synthesis of heterocycles [1,3] and the antimicrobial activity of sulphur and nitrogen-containing organic compounds [4], we wish to report the synthesis of a series of 4-amino-5-aryl-1,2,4-triazole-3-thiones and their derivatives which were found to exhibit a wide range of biological and antimicrobial activities [5-12]. In this study we aimed to correlate the antimicrobial activity, if any, of triazoles I with different substituents at the phenyl group in position 5. Besides, masking either the amino or the mercapto group, one at a time, might demonstrate which could be involved in the antimicrobial activity. The synthesis and antimicrobial activity of some fused systems of I will be the subject of further work.

Results and Discussion.

A group of twelve 4-amino-5-aryl-1,2,4-triazole-3-thiones I were prepared by hydrazinolysis of the corresponding potassium 3-aroyldithiocarbazates with excess hydrazine hydrate (Scheme I) following Reid and Heindel procedure [13]. 4-Amino-1,2,4-triazole-3-thione was prepared according to the Beyer procedure [14]. The structure of I was confirmed from analytical (Table I) and spectral data (Table II). Thus their ir spectra showed stretching band in the regions 3280-3350 cm⁻¹ and 1610-1635 cm⁻¹ attributed to NH2 and C=N respectively. Their nmr spectra showed a singlet at δ 5.14-5.87 ppm (2H, NH₂) and a singlet at δ 13.61-14.79 ppm (1H, SH or HNCS) reflecting the thiolthione tautomeric forms [13,15]. The aromatic protons of the aryl group resonated as a multiplet at δ 6.93-8.27 ppm. It was suggested [16] that the cyclocondensation of the potassium 3-aroyldithiocarbazates to triazoles I upon treatment with hydrazine hydrate passes through an intermediate 1-aroylthiocarbohydrazide that undergoes simultaneous cyclization yielding I.

Reaction with Acid Chlorides.

The reaction of I with acid chlorides in pyridine at 0°

Scheme I

have been previously described by Kanaoka [17]. Thus treating triazoles I with acetyl chloride or benzoyl chloride afforded the corresponding 4-acylamino-5-aryl-1,2,4-triazole-3-thiones II. Their analytical (Table I) and spectral data (Table II) are in accordance with the structures ass-

Table I

Analytical Data of 4-Amino-5-acryl-1,2,4-triazole-3-thiones I and their Derivatives II-VIII

Compound	Y	x	Z	Mp °C	Yield	Molecular formula	С	н	N	s
				(Lit mp)	%		Calcd/		Calcd/	
										(Found)
la	Н	Н	Н	203-204	78	C,H,N,S	40.05			
				(203-206) [13]	10	G ⁸ 11 ⁸ 14 ⁴ 2	49.97 (50.12)	4.20 (4.11)	29.15	16.68 (16.91)
Ib	4-Me	Н	Н	211-212	63	C,H₁0N.S	52.40	4.90	27.17	15.53
Ic	4-MeO	Н	Н	(213) [27]			(52.26)			(15.49)
10	4-14160	, 11	п	201 (205-206) [13]	59	C ₉ H ₁₀ N ₄ OS	48.63	4.54	25.21	14.42
Id	2-C1	Н	Н	154-155	72	C ₈ H ₇ ClN ₄ S [a]	(48.66) 42.38	(4.54) 3.12		(14.35)
				(152) [27]		-874- [w]	(42.21)		24.72 (24.82)	14.14 (14.06)
Ie	4-C1	Н	Н	210-211	65	C ₈ H ₇ ClN ₄ S [b]	42.38	3.12	24.72	14.14
If	2-Br	н	Н	172-173	52	CH D-N C (-)	(42.39)	(3.11)	(24.68)	. ,
			••	112-175	32	$C_8H_7BrN_4S$ [c]	35.43 (35.28)	2.61	20.67	11.82
Ig	3-Br	H	Н	223-234	58	C ₈ H ₇ BrN ₄ S [d]	35.43	(2.60) 2.61	(20.62) 20.67	(12.05) 11.82
Ih	4-Br	Н	11				(35.25)	(2.53)		(11.70)
111	4-DI	п	Н	192-193	57	C _e H ₇ BrN ₄ S [e]	35.43	2.61	20.67	11.82
Ii	[f]	Н	Н	179-180	61	C,H10N4S	(35.61) 52.40	(2.59)		(11.77)
				(180) [27]	••	C91110114D	(52.15)	4.90 (4.78)	27.17 (26.95)	15.53 (15.31)
lj	2-Me	H	Н	154-155	60	C,H,ON,S	52.40	4.90	27.17	15.53
Ik	3-Me	Н	H	150 160	50	CH NO	(52.11)	(4.73)	(27.01)	(15.42)
	0 1.20	••	••	159-160	58	$C_9H_{10}N_4S$	52.40	4.90	27.17	15.53
I)	4-NH ₂	H	Н	260-261	50	C ₈ H ₉ N ₅ S	(52.35) 47.35	(4.84) 4.39	(27.12) 33.79	(15.42) 15.47
11-	**	0014	••				(47.21)	(4.31)	(33.56)	(15.41)
Ha	Н	COMe	Н	218-219	60	$C_{10}H_{10}N_{4}OS$	51.04	4.25	23.82	13.62
IIh	4-Br	COMe	Н	(218-219) [17] 281-282	57	C ₁₀ H ₉ BrN ₄ OS [g]	(51.27)	(4.35)		(13.51)
				201 202	01	C10H9DIN4OS [g]	38.22 (38.23)	2.89 (2.87)	17.84 (17.69)	10.20 (10.15)
IIi	[f]	COMe	Н	239-240	67	$C_{11}H_{12}N_{4}OS$	53.20	4.88	22.57	12.91
IIaa [h]	Н	COC,H,	u	051 050	00	a	(53.12)	(4.94)		(13.00)
()	••	0006115		251-252 (255) [17]	89	$C_{15}H_{12}N_4OS$	60.79	4.09	18.91	10.82
llga	3-Br	COC'H2	Н	190-191	54	C ₁₅ H ₁₁ BrN ₄ OS [i]	(60.74) 40.01	(4.16) 2.96	(18.89) 14.93	(10.82) 8.54
IT:-	ra	COG 11					(40.16)	(2.81)	(14.87)	(8.68)
IIia	[f]	COC'H2	н ,	267-268	71	$C_{16}H_{14}N_{4}OS$	61.91	4.56	18.05	10.33
IIIa	Н	Н	[ن]	178-179	45	CHNS	(61.78)	(4.64)		(10.38)
			0,1	110-117	40	$C_{17}H_{16}N_8S_2$	51.49 (51.46)	4.08 (4.03)	28.27 (28.20)	16.17
IIIP	4-Me	Н	[i]	236-237	75	$C_{19}H_{20}N_8S_2$	53.74	4.76	26.40	(16.33) 15.10
IIIc	4-MeO	u	r:1	005.007			(53.66)	(4.74)	(26.51)	
****	TIMEO	11	(i)	205-206	58	$C_{19}H_{20}N_8O_2S_2$	49.97	4.42	24.55	14.04
IIIe	4-Cl	H	[i]	238-239	65	$C_{17}H_{14}Cl_2N_8S_2[k]$	(49.94) 43.87	(4.43) 3.04	(24.60) 24.08	(14.02)
717	0 D		•				(44.02)			13.78 (13.97)
IIIg	3-Br	Н	(i)	194-195	61	$C_{17}H_{14}Br_2N_8S_2[1]$	36.83	2.55	20.22	_
ШЬ	4-Br	Н	[j]	236-237	54	C H D. MC L 1	(36.71)		(20.03)	-
			01	250-251	34	$C_{17}H_{14}Br_2N_8S_2 [m]$	36.83 (36.78)	2.55 (2.56)	20.22	11.57
IIIi	[f]	Н	់	178-179	61	C ₁₉ H ₂ ON ₈ S ₂	53.74	4.76	(20.24) 26.40	15.10
IVa	Н	Н	CH CN				(53.66)		(26.49)	
114	11	11	CH₂CN	128-129	56	$C_{10}H_{9}N_{s}S$	51.92	3.93	30.29	13.86
IVb	4-Me	Н	CH ₂ CN	182-183	62	$C_{11}H_{11}N_sS$	(51.71) 53.85	(4.01) 4.53	(30.19)	
TV			***				(53.77)		28.55 (28.46)	13.07 (12.92)
IVc	4-MeO	Н	CH ₂ CN	140-141	63	$C_{11}H_{11}N_sOS$	50.55	4.25	26.81	12.27
							(50.36)	(4.29)	(26.79)	(12.50)

Table I
(continued)

Compound	Y	x	z	Mp °C (Lit mp)	Yield %	Molecular formula	C Calcd/ (Found) (I			S Calcd/ Found)
IVe	4-Cl	н	CH ₂ CN	153-154	65	$C_{10}H_8ClN_5S$ [n]	45.19 (45.30)	3.04 (3.17)	26.36 (26.17)	12.06 (11.97)
IVh	4-Br	Н	CH ₂ CN	157-158	58	$C_{10}H_{\theta}BrN_{s}S$ [0]	38.72	2.60	22.58	10.34 (10.18)
IVi	[f]	Н	CH ₂ CN	130-131	54	$C_{11}H_{11}N_sS$	53.85 (53.73)	4.53 (4.62)	28.55 (28.39)	
Va	Н	Н	CH ₂ CO ₂ Me	176-177	80	$C_{11}H_{12}N_4O_2S$	49.98 (50.17)		21.20 (21.19)	
Vb	4-Me	Н	CH ₂ CO ₂ Me	225-226	87	$C_{12}H_{14}N_4O_2S$	51.77 (51.66)	,	,	11.63 (11.52)
Vc	4-MeO	Н	CH ₂ CO ₂ Me	195-196	85	$C_{12}H_{14}N_4O_3S$	48.96 (49.07)	4.73 (4.66)	19.04 (19.20)	10.39 (10.35)
Ve	4-Cl	Н	CH ₂ CO ₂ Me	202-203	78	$C_{11}H_{11}CIN_4O_2S[p]$	44.22 (44.16)	3.72 (3.70)		10.73 (10.68) 9.34
Vg	3-Br	H	CH ₂ CO ₂ Me	112-113	73	$C_{11}H_{11}BrN_4O_2S$ [q]	38.49 (38.37)	3.24 (3.15) 5.08	16.33 (16.48) 20.13	(9.35) 11.63
Vi	[f]	Н	CH ₂ CO ₂ Me	199-200	83	C ₁₂ H ₁₄ N ₄ O ₂ S	51.77 (51.94) 45.43	(5.20) 4.59	(19.97) 31.80	(11.59) 12.13
Vla	Н	Н	CH ₂ CONHNH ₂	166-167	70	C ₁₀ H ₁₂ N ₆ OS	(45.53) 44.88	(4.63) 4.80	(31.68) 28.56	(11.94) 10.89
VIc	4-MeO		CH ₂ CONHNH ₂	185-186	79 59	C ₁₀ H ₁₄ N ₆ OS C ₁₀ H ₁₁ CIN ₆ OS [r]	(44.74) 40.20	(4.83) 3.72	(28.49) 28.13	(10.78) 10.73
VIe	4-Cl	Н	CH ₂ CONHNH ₂	222-223	68	$C_{10}H_{11}BrN_{\phi}OS[s]$	(40.32) 34.99	(3.66) 3.24	(28.00) 24.49	(10.56) 9.34
VIg	3-Вг	H	CH2CONHNH2	175-176 138-139	65	$C_{10}H_{14}N_6OS$	(35.03) 47.46	(3.26) 5.08	(24.38) 30.20	(9.51) 11.52
VIi	[f]	Н	CH_CONHNH2	204-205	65	$C_{17}H_{16}N_6O_2S$	(47.32) 55.41	(5.10) 4.39	21.81	(11.43) 8.70
VIIaa	Н	Н	CH ₂ CO(NH) ₂ COC ₆ H ₅ CH ₂ CO(NH) ₂ COC ₆ H ₅	206-207	45	C ₁₈ H ₁₈ N ₆ O ₃ S	(55.37) 54.25	(4.31) 4.56	(21.89) 21.10	8.06
VIIca	4-MeO	, п Н	CH ₂ CO(NH) ₂ COC ₆ H ₄ -4-NO ₂	213-214	61	$C_{17}H_{14}CIN_7O_4S$ [t]	(54.23) 48.27	(4.65)	(21.07) 21.90	7.16
VIIem VIIIaa	H.	н	$CH_{2}CONHN = CHC_{6}H_{5}$	196-197	71	C ₁₇ H ₁₆ N ₆ OS	(48.30) 57.93	(3.19)	(21.76)	9.10
VIIIac	н	н	CH,CONHN = CHC,H,·4-MeO	201-202	89	$C_{18}H_{18}N_6O_2S$	(57.85) 56.52	(4.68) 4.75	(23.73) 21.98 (21.89)	8.38
VIIIam	н	н	CH ₂ CONHN=CHC ₆ H ₄ -4-NO ₂	246-247	58	$C_{17}H_{15}N_7O_3S$	(56.49) 51.37 (51.25)	(4.83) 3.81 (3.91)	24.67	8.07
VIIIca	4-Me(э н	CH ₂ CONHN=CHC ₆ H ₅	206-207	48	$C_{18}H_{18}N_6O_2S$	56.52 (56.53)	4.75	21.98	8.38
VIIIcm	4-Me	о н	CH ₂ CONHN = CHC ₆ H ₄ -4-NO ₂	242-243	48	$C_{18}H_{17}N_7O_3S$	49.14 (49.28)	4.13	23.60	7.72
VIIIea	4-Cl	Н	$CH_2CONHN = CHC_6H_5$	245-246	77	$C_{17}H_{15}ClN_6OS[u]$	53.17 (52.99)	3.92	21.73	8.29
VIIem	4-Cl	Н	$CH_2CONHN = CHC_6H_4-4-NO_2$	235-236	62	$C_{17}H_{14}CIN_7O_3S[n]$	47.27 (47.39)	4.27	22.71 (22.56	

[a] Anal. Calcd. Cl, 15.64. Found: Cl, 15.54. [b] Anal. Calcd. Cl, 15.64. Found: Cl, 15.58. [c] Anal. Calcd. Br, 29.47. Found: Br, 29.25. [d] Anal. Calcd. Br, 29.47. Found: Br, 29.52. [e] Anal. Calcd. Br, 29.47. Found: Br, 29.46. [f] Y-C₆H₄ = C₆H₅CH₂. [g] Anal. Calcd. Br, 25.43. Found: Br, 25.56. [h] Two letters after compound number: the first one indicates an aryl substituent in the triazole nucleus at position 5-, and the second one indicates an aryl substituent in other sites. [i] Anal. Calcd. Br, 21.31. Found: Br, 21.31. [j] For compounds of series III, Z structure below where Y corresponds to the same in the Table. [k] Anal. Calcd. Cl 15.23. Found: C, 15.31. [j] Anal. Calcd. Br, 28.83. Found: Br, 28.83. Found: Br, 28.65. [m] Anal. Calcd. Br, 28.83. Found: Br, 28.65. [m] Anal. Calcd. Br, 23.26. Found: Br, 23.28. Found: Br, 23.28. Found: Cl, 11.86. Found: Cl, 11.86. Found: Cl, 11.79. [q] Anal. Calcd. Br, 23.28. Found: Br, 23.42. [r] Anal. Calcd. Cl, 11.86. Found: Cl, 11.68. [s] Anal. Calcd. for Br, 23.25. Found: Br, 23.15. [t] Anal. Calcd. Cl, 7.91. Found: Cl, 7.86. [u] Anal. Calcd. Cl, 9.16. Found: Cl, 9.14. [v] Anal. Calcd. Cl, 8.21. Found: Cl, 8.11.

Table II

Spectral Data of 4-Amino-5-aryl-1,2,4-triazole-3-thiones I and their Derivatives II-VIII

Compoun	d Y	x	Z	N-H	(Potassiu		mide) C C=O		δ (Dimethylsulfoxide) (Multiplicity, assignment)
Ia	Н	н	Н	3300					13.61 (s, 1H, SH), 8.01-7.39 (m, 5H, aromatic H), 5.14 (s,
Іь	4-Me	Н	Н	3293					2H, NH ₂) 13.96 (s, 1H, SH), 8.02-7.21 (m, 4H, aromatic H), 5.49 (s,
Ic	4-MeO	Н	Н	3310					2H, NH ₂), 2.41 (s, 3H, CH ₃ Ar) 13.91 (s, 1H, SH), 7.98-7.01 (m, 4H, aromatic H), 5.48 (s,
Id	2-C1	н	н	3330					2H, NH ₂), 3.78 (s, 3H, CH ₃ OAr) 14.00 (s, 1H, SH), 8.23 (m, 4H, aromatic H), 4.84 (s, 2H,
I e	4-Cl	н	Н	3265					NH ₂) 13.87 (s, 1H, SH), 8.11-7.62 (m, 4H, aromatic H), 5.70 (s,
If	2-Br	н	Н	3300					2H, NH ₂) 14.73 (s, 1H, SH), 7.53 (m, 4H, aromatic H), 5.09 (s, 2H,
Ig	3-Br	Н	Н	3300					NH ₂) 14.00 (s, 1H, SH), 8.27-7.45 (m, 4H, aromatic H), 5.61 (s,
Ih	4-Br	Н	Н	3280					2H, NH ₂) 13.79 (s, 1H, SH), 8.14-7.57 (m, 4H, aromatic H), 5.62 (s,
Ii	[a]	Н	н	3280					2H, NH₂)
Ij	2-Me	Н	Н	3290					13.61 (s, 1H, SH), 7.29 (s, 5H, aromatic H), 5.33 (s, 2H, NH ₂), 4.01 (s, 2H, CH ₂ Ph)
Ik	3-Me	Н	Н	3290					13.99 (s, 1H, SH), 7.52 (m, 4H, aromatic H), 5.51 (s, 2H, NH ₂), 2.31 (s, 3H, CH ₃ Ar)
II	4-NH ₂	Н	Н	3350					14.79 (s, 1H, SH), 8.02 (m, 4H, aromatic H), 5.87 (s, 2H, NH ₂), 2.31 (s, 3H, CH ₃ Ar)
IIa	н	СОМе	Н		940		1.600		13.92 (s, 1H, SH), 8.00 (m, 4H, aromatic H), 5.12 (s, 4H, NH ₂)
IIn	4-Вг	СОМе	Н	3290, 3	24 0		1680		13.64 (s, 1H, SH), 7.33 (m, 5H, aromatic H), 5.53 (s, 1H, NHCO), 2.02 (s, 3H, CH ₃ CO)
IIi	[a]	СОМе	н	3130			1680		14.21 (s, 1H, SH), 11.50 (s, 1H, N=COH), 7.79 (m, 4H, Ar), 2.02 (s, 3H, CH ₃ CO)
IIaa	H H			3130			1690		14.08 (s, 1H, SH), 11.52 (s, 1H, N=COH), 6.81 (m, 4H, Ar), 3.88 (s, 1H, NHCO) [b], 4.31 (s, 2H, CH ₂ Ph)
IIga		COC,Hs	Н	3220, 3	110		1690		14.28 (s, 1H, SH), 12.31 (s, 1H, N°COH) [b], 8.03 (m, 10H, 2Ar), 3.51 (s, 1H, HNC=O) [b]
_	3-Br	COC'H2	Н	3240			1680		14.18 (s, 1H, SH), 8.38 (m, 9H, 2Ar), 3.82 (s, 1H, NHCO) [b]
Ilia	[a]	COC ₆ H ₅	Н	3280, 33	150		1660		13.91 (s, 1H, SH), 11.92 (s, 1H, N=COH), 8.00-7.71 (m, 9H, Ar), 4.03 (s, 2H, CH ₂ Ar)
IIIa	Н	Н	[c]	3320, 32	260			1620	8.02-7.51 (m, 10H, Ar), 6.09 (s, 4H, 2NH ₂), 5.00 (s, 2H, SCH ₂)
Шь	4-Me	Н	[c]	3320, 32	250			1620	7.91-7.38 (m, 8H, Ar) [d], 5.11 (s, 2H, SCH ₂), 1.91 (s, 6H, 2CH ₄)
IIIe	4-MeO	Н	[c]	3320, 32	250			1615	7.92-7.00 (m, 8H, Ar), 6.09 (s, 4H, NH ₂), 4.93 (s, 2H, SCH ₂), 3.71 (s, 6H, 2CH ₂ O)
IIIe IIIg	4-Cl 3-Br	H H	[c] [c]	3320, 32				1620	7.91 (m, 8H, Ar), 6.2 (s, 4H, 2NH _s), 5.03 (s, 2H, SCH _s)
IIIn	4-Br	H	[c]	3320, 32 3320, 32				1630 1 1625 8	7.83 (m, 8H, Ar) [d], 5.17 (s, 2H, SCH ₂) 3.01-7.72 (m, 8H, Ar), 6.19 (s, 4H, 2NH ₂), 5.01 (s, 2H,
IIIi	[a]	Н	[c]	3320, 32	860				SCH ₂) 7.31 (s, 10H, Ar), 5.84 (s, 4H, 2NH ₂), 4.81 (s, 2H, SCH ₂),
IVa	Н	Н	CH ₂ CN	3350, 31	40 225	50		4	4.11 (s, 4H, 2CH ₂ Ar) 3.46-8.01 (m, 5H, Ar), 6.48 (s, 2H, NH ₂) [b], 4.51 (s, 2H,
IVb	4-Me	Н	CH ₂ CN	3340, 31	40 225	50			SCH ₂) 3.31-7.69 (m, 4H, Ar), 6.48 (s, 2H, NH ₂) [b], 4.51 (s, 2H,
$IV_{\mathbf{c}}$	4-MeO	Н	CH ₂ CN	3340, 31	50 226	60			6CH ₂), 2.41 (s, 3H, CH ₃ Ar) 3.43-7.51 (m, 4H, Ar), 6.48 (s, 2H, NH ₂), 4.51 (s, 2H,
IVe	4-C1	Н	CH ₂ CN	3310, 319	90 225	0		S	SCH ₂), 4.03 (s, 3H, CH ₃ OAr) .32-7.58 (m, 4H, Ar), 6.48 (s, 2H, NH ₂) [b], 4.48 (s, 2H,
IVh	4-Br	Н	CH,CN	3340, 320	00 226	n		S	SCH ₂)
IVi	[a]	Н	CH ₂ CN	3300, 320			1	620 7	.34 (m, 4H, Ar), 6.48 (s, 2H, NH ₂), 4.48 (s, 2H, SCH ₂) .83 (s, 5H, Ar), 6.48 (s, 2H, NH ₂), 4.51 (s, 2H, SCH ₂), 4.31 s, 2H, CH ₂ Ar)

Table II
(continued)

Compound	Y	x	z	ν (Potassium b N-H	oromide) C C=0	m ⁻¹ C = N	δ (Dimethylsulfoxide) (Multiplicity, assignment)
V	Н	Н	CH CO M				7.00.7.51 (511 A.) (00 (011 NH.) A.1.1 (011
Va	п	п	CH ₂ CO ₂ Me	3250, 3120	1740	1040	7.89-7.51 (m, 5H, Ar), 6.09 (s, 2H, NH ₂), 4.11 (s, 2H, SCH ₂), 3.81 (s, 3H, CH ₃ CO ₂)
Vb	4-Me	Н	CH ₂ CO ₂ Me	3250, 3120	1740	1640	7.91-7.33 (m, 4H, Ar), 6.09 (s, 2H, NH ₂), 4.12 (s, 2H,
17.	4 M - O	TT.	CH CO M	2050 2100	1740	1640	SCH ₂), 3.81 (s, 3H, CH ₃ CO ₂), 2.42 (s, 3H, CH ₃ Ar)
Vc	4-MeO	H	CH ₂ CO ₂ Me	3250, 3120	1740	1040	7.93-7.01 (m, 4H, Ar), 6.09 (s, 2H, NH ₂), 4.11 (s, 2H, SCH ₂), 3.81 (s, 3H, CH ₃ CO ₂), 3.61 (s, 3H, CH ₃ OAr)
Ve	4-Cl	H	CH ₂ CO ₂ Me	3260, 3140	1735	1640	8.13-7.62 (m, 4H, Ar), 6.19 (s, 2H, NH ₂), 4.11 (s, 2H,
••			au ao u				SCH ₂), 3.81 (s, 3H, CH ₃ CO ₂)
Vg	3-Br	Н	CH_2CO_2Me	3270, 3150	1730	1640	7.83 (m, 4H, Ar), 6.18 (s, 2H, NH ₂), 4.11 (s, 2H, SCH ₂), 3.81 (s, 3H, CH ₂ CO ₂)
Vi	[a]	Н	CH,CO,Me	3250, 3120	1740	1640	7.52 (s, 5H, Ar), 6.09 (s, 2H, NH ₂), 4.11 (s, 2H, SCH ₂), 4.21
	- *						(s, 2H, CH ₂ Ar), 3.81 (s, 3H, CH ₃ CO ₂)
VIa	Н	H	CH ₂ CONHNH ₂	3320, 3190	1680	1600	9.81 (s, 1H, HNCO), 8.01-7.47 (m, 5H, Ar), 6.06 (s, 2H,
VIb	4-Me	Н	CH,CONHNH,	3310, 3250	1690	1600	NH ₂) 4.29 (s, 2H, CONNH ₂) [b], 3.81 (s, 2H, SCH ₂) 9.83 (s, 1H, HNCO), 8.00-7.12 (m, 4H, Ar), 6.19 (s, 2H,
*10	THE	11	CH2COMMM2	3010, 3230		1000	NH ₂), 4.31 (s, 2H, CONHNH ₂) [b], 4.13 (s, 2H, SCH ₂), 3.61
							(s, 3H, CH ₃ OAr)
VIe	4-Cl	Н	CH ₂ CONHNH ₂	3300, 3190	1700	1615	9.81 (s, 1H, HNCO), 8.03-7.51 (m, 4H, Ar), 6.11 (s, 2H,
VIg	3-Br-H		CH,CONHNH,	3300, 3180	1670	1600	NH ₂), 4.18 (s, 2H, CONNH ₂) [b], 3.81 (s, 2H, SCH ₂) 9.49 (s, 1H, HNCO), 8.01 (m, 4H, Ar), 6.20 (s, 2H, NH ₂),
V 1g	9-101-11		CH ₂ COMMM ₂	3300, 3100	1010	1000	4.31 (s, 2H, CONNH ₂), 3.89 (s, 2H, SCH ₂)
VIi	[a]	H	CH2CONHNH2	3320, 3190	1680	1600	9.13 (s, 1H, HNCO), 7.48 (s, 5H, Ar), 5.91 (s, 2H, NH ₂),
							4.19 (s, 2H, CONNH ₂), 4.11 (s, 2H, SCH ₂), 3.71 (s, 2H,
VIIaa	Н	Н	CH,CO(NH),COC,H,	3300, 3200	1670	1610	CH ₂ Ar) 11.18 (s, 1H, HNCO), 10.91 (s, 1H, HNCOR'), 8.39-7.41 (m,
VIII	п	11	CH ₂ CO(NH) ₂ COC ₆ H ₅	3300, 3200	1070	1010	10H, 2Ar), 6.28 (s, 2H, NH ₂), 4.18 (s, 2H, SCH ₂)
VIIca	4-MeO	H	CH2CO(NH)2COC6H5	3320, 3260	1695	1640	10.81 (s, 1H, HNCO), 10.74 (s, 1H, NHCOR'), 7.91-7.12 (m,
							9H, 2Ar), 6.21 (s, 2H, NH ₂), 4.11 (s, 2H, SCH ₂), 3.92 (s,
VIIem	4-Cl	Н	CH CO(NH) COC H 4 NO	3380, 3280	1690	1600	3H, CH ₃ OAr) 11.28)s, 1H, HNCO), 10.93 (s, 1H, NHCOR'), 8.21-7.58 (m,
viiem	4-61	п	CH ₂ CO(NH) ₂ COC ₆ H ₄ -4-NO ₂	3300, 3200	1090	1000	8H, 2Ar), 6.18 (s, 2H, SCH ₂), 4.11 (s, 2H, SCH ₂)
VIIIaa	Н	Н	CH2CONHN = CHC6H5	3300, 3190	1670	1600	12.31 (s, 1H, HNCO), 8.01-7.49 (m, 10H, 2Ar), 6.48 (s, 2H,
			-				NH_2), 4.48 (s, 2H, SCH ₂), 4.09 (s, 1H, $N = CH$)
VIIIac	Н	Н	$CH_2CONHN = CHC_6H_4-4-MeO$	3340, 3180	1670	1600	12.01 (s, 1H, HNCO), 7.93-6.92 (m, 9H, 2Ar), 6.11 (s, 2H, NH, 14.20 (s, 2H, SCH, 14.01 (s, 1H, NH, CH), 2.71 (s, 2H, SCH, 14.01 (s, 1H, NH, CH), 2.71 (s, 2H, SCH, 14.01 (s, 1H, NH, CH), 2.71 (s, 2H, SCH, 14.01 (s, 1H, NH, CH), 2.71 (s, 2H, SCH, 14.01 (s, 1H, NH, CH), 2.71 (s, 2H, SCH, 14.01 (s, 1H, NH, CH), 2.71 (s, 2H, SCH, 14.01 (s, 1H, NH, CH), 2.71 (s, 2H, SCH, 14.01 (s, 1H, SCH, 14.01
							NH_2), 4.39 (s, 2H, SCH ₂), 4.01 (s, 1H, N=CH), 3.71 (s, 3H, CH.OAr)
VIIIam	Н	Н	$CH_2CONHN = CHC_6H_4-4-NO_2$	3300, 3290	1680	1610	12.38 (s, 1H, HNCO), 8.11-7.49 (m, 9H, 2Ar), 6.19 (s, 2H,
							NH_2), 4.46 (s, 2H, SCH ₂), 4.13 (s, 1H, $N = CH$)
VIIIca	4-MeO	Н	$CH_2CONHN = CHC_6H_5$	3310, 3200	1680	1610	12.00 (s, 1H, HNCO), 8.21-7.19 (m, 9H, 2Ar), 6.29 (s, 2H, NH), 4.49 (s, 2H, SCH), 4.12 (s, 1H, N=CH), 2.02 (s, 2H, NH), 4.49 (s, 2H, SCH), 4.12 (s, 1H, N=CH), 2.02 (s, 2H, NH), 4.49 (s, 2H, SCH), 4.12 (s, 2H, N=CH), 4.20 (s, 2H, NH), 4.49 (s, 2H, SCH), 4.12 (s, 2H, N=CH), 4.49 (s, 2H, SCH), 4.12 (s, 2H, N=CH), 4.49 (s, 2H, SCH), 4.12
							NH_2), 4.48 (s, 2H, SCH_2), 4.13 (s, 1H, $N = CH$), 3.92 (s, 3H, CH_3OAr)
VIIIcm	4-MeO	H	$CH_2CONHN = CHC_6H_4-4-NO_2$	3320, 3290	1670	1600	12.18 (s, 1H, HNCO), 8.31-7.19 (m, 8H, 2Ar), 6.28 (s, 2H,
							NH_2), 4.51 (s, 2H, SCH ₂), 4.11 (s, 1H, N = CH), 3.92 (s, 3H,
VIIIea	4-Cl	Н	CH,CONHN = CHC,H,	3300, 3190	1670	1600	CH ₃ OAr) 12.21 (s, 1H, HNCO), 8.09-7.58 (m, 9H, 2Ar), 6.18 (s, 2H,
viiiea	4-C1	11	GII2GOIVIIIV CHG6H5	5500, 5190	1010	1000	NH_2 , 4.51 (s, 2H, SCH ₂), 4.11 (s, 1H, N=CH)
VIIIem	4-Cl	Н	CH ₂ CONHN = CHC ₆ H ₄ -4-NO ₂	3300, 3180	1690	1610	11.68 (s, 1H, HNCO), 8.11-7.48 (m, 8H, 2Ar), 6.21 (s, 2H,
							NH_2), 4.51 (s, 2H, SCH_2), 4.13 (s, 1H, $N = CH$)

[a] Y. C, H, = C, H, CH,. [b] Broad. [c] Same as in [j] Table I. [d] Solvent deuterated trifluoroacetic acid.

igned. The ir spectra of compounds II showed a strong sharp band in the 1660-1690 cm⁻¹ characteristic of ν C = 0 of secondary amides [18a] and two bands at 3100-3300 cm⁻¹ which stand for ν N-H and ν O-H forms. Besides, their nmr spectra showed singlet at δ 12.31 ppm (1H) and at δ 5.53 ppm (1H) attributed to the HOC=N and HNC=O tautomeric forms. All members of II showed a singlet at δ 13.64-14.28 ppm (1H, HNC=S). The N-acetyl derivatives showed also a singlet at δ ppm (3H, CH₃CO).

Reaction with Methylene Iodide.

Triazoles I reacted with excess methylene iodide in aqueous potassium hydroxide giving rise to bis(4-amino-5-aryl-1,2,4-triazol-3-ylthio)methanes III in 45-75% yield. Tables I and II list the analytical and spectral data, respectively, of compounds III. The diagnostic features in their nmr spectra are the presence of the methylene singlet at δ 4.92-5.17 ppm (2H, SCH₂S), the amino singlet at δ 5.84-6.09 ppm integrating to four protons, and that it is

devoid of the SH singlet present in the original triazoles I. Beside the mass spectra of one example IIIi gave a parent peak M⁺ [m/e = 456 (100%)].

Reaction with Chloroacetonitrile.

Heating an alcoholic solution of I with chloroacetonitrile for four hours afforded 4-amino-5-aryl-3-cyanomethylthio-1,2,4-triazoles IV [9]. The structures of IV were confirmed by analytical (Table I) and spectral data (Table II). Their ir spectra showed a sharp band at 2230-2260 cm⁻¹ characteristic of the stretching frequency of nitriles [18b],

Table III

Ultraviolet Absorption Spectral Data for
4-Amino-5-aryl-1,2,4-triazole-3-thiones and their Derivatives II,IV

Compound	Y	x	Z	λ max (Ethanol) nm
				$(\log \epsilon)$
Ia	Н	Н	Н	276 (3.98) [a], 251
				(4.30), 237 (4.16)
Ib	4-Me	Н	H	275 (4.06) [a], 250
				(4.33)
Ic	4-MeO	Н	H	276 (4.52) [a], 256
				(4.54)
Id	2-C1	Н	H	252 (4.38)
Ie	4-Cl	H	H	286 (3.98) [a], 252
				(4.27)
If	2-Br	H	H	251 (4.26)
Ig	3-Br	H	H	276 (4.18) [a], 252
				(4.42)
Ih	4-Br	H	H	285 (3.96) [a], 250
				(4.12)
Ii .	[b]	Н	H	251 (4.32)
Ij	2-Me	Н	H	276 (4.21) [a], 252
				(4.52)
Ik	3-Me	H	Н	280 (3.91) [a], 252
•.				(4.25)
Il	4-NH ₂	H	H	288 (4.29) [a], 260
	**	2017		(4.15)
IIa	H	COMe	H	251 (4.32)
IIh	4-Br	COMe	H	288 (4.03) [a], 253
***	0.1	0014	••	(4.29)
IIi	[b]	COMe	H	278 (4.10) [a], 252
Ilaa	Н	COCII	**	(4.26), 227 (4.05)
1144	п	COC ₆ H ₅	Н	255 (4.29), 223
IIga	3-Br	COC,H,	Н	(4.33)
IIia	[b]	COC,H,	H	265 (4.09)
1118	լայ	COC6H2	n	253 (4.16), 227 (4.06)
IVa	Н	H	CH ₂ CN	, ,
IVa	и 4-Ме	H	CH ₂ CN	263 (4.13)
IVc	4-MeO	H	CH ₂ CN	256 (4.23) 261 (4.25)
IVe	4-MeO 4-Cl	H	CH ₂ CN	263 (4.07)
IVh	4-C1 4-Br	H	CH ₂ CN	266 (4.44)
1 7 11	4-DI	n	CH2CIN	400 (4.44)

[a] Shoulder. [b] Y, $C_6H_4 = C_6H_5CH_2$.

[b]

Н

CH,CN 264 (4.12)

IVi

whereas the nmr spectra of IV showed a singlet at δ 4.51 ppm (2H, CH₂CN) and broad singlet at δ 6.48 ppm (2H, NH₂).

Reaction with Methyl Bromoacetate and Subsequent Transformations.

Treatment of I with methyl bromoacetate in alcoholic sodium hydroxide solution afforded 4-amino-5-aryl-3-carbomethoxymethylthio-1,2,4-triazoles V in 73-87% yield. Their analytical and spectral data (Tables I and II) were in favour of the structure assigned. Thus their ir spectra showed a strong broad band in the region 1730-1740 cm⁻¹ characteristic of the stretching frequency of the carbonyl group of esters and two strong bands in the region 3130-3250 cm⁻¹ attributed to the stretching modes of the amino group [18c]. The nmr of V showed singlets at δ 4.11 ppm (2H, SCH₂), δ 3.81 ppm (3H, CH₃OCO), δ 6.09 ppm (2H, NH₂) and multiplet at δ 7.33-8.13 ppm due to aromatic protons. These carbomethoxymethylthio derivatives V were further treated with hydrazine hydrate in absolute ethanol to give (4-amino-5-aryl-1,2,4-triazol-3-ylthio)acethydrazides VI in 60-80% yields. Furthermore, VI was treated with aroyl chlorides to give 1-[(4-amino-5-aryl-1.2.4triazole-3-ylthio)acetyl]-2-aroylhydrazines VII. Condensation of VI with aromatic aldehydes gave the corresponding arylmethylene-(4-amino-5-aryl-1,2,4-triazol-3-ylthio)acethydrazones VIII. The analytical data of compounds VI-VIII verify their structures and are given in Table I and their spectral data listed in Table II. The infrared spectra of the hydrazides VI showed a strong band in the region 1670-1690 cm⁻¹ characteristic of ν C=0 of secondary amides [18a]. The two bands in the region 3190-3320 cm⁻¹ are the stretching modes of NH₂, HNCO and N=C-OH groups. The nmr spectra of VI showed a singlet at δ 9.13-9.81 ppm (1H, HNC = 0 or N = C-OH), a broad singlet at δ 4.29 ppm (2H) assigned to the hdyrazide NH₂ and a singlet at δ 5.96-6.18 ppm (2H, 4-NH₂). On the other hand, while the nmr spectra of VII and VIII lacked the characteristic of the NH₂ of the hydrazide group (cf. Series VI), it showed the pattern in accordance with the structure assigned to each series. Compound VII showed a singlet at δ 10.84-11.31 ppm (1H, HNCO) and a singlet at δ 10.68-10.82 ppm (1H, HNCOR). Compounds VIII showed in their nmr spectra a singlet at δ 11.72-12.38 ppm (1H, HNCO) and a singlet at δ 4.01-4.13 ppm (1H, N = CH). Besides, the 4-NH₂ and SCH₂ protons in VII and VIII resonated as singlets at δ 6.12-6.44 ppm and δ 4.11-4.24 ppm, respectively.

Electronic Spectra of Compounds I, II and IV.

Although many 4-amino-5-substituted-1,2,4-triazole-3-thiones, their amino and thiol derivatives have been synthesized earlier [14,20-26], yet no ultraviolet spectra were reported for these compounds. The ultraviolet absorption

spectra of compounds I, II and IV were determined in ethanol, a summary of the spectra data is listed in Table III. 4-Amino-1,2,4-triazole-3-thione show an absorption maximum at λ max 251 nm (log ϵ 4.13) due to $n \rightarrow II^*$ transition. The introduction of a substituted phenyl group at position 5 of triazoles I results in appearance of a shoulder at λ max 275-288 nm (log ϵ 3.98-4.52) together with the absorption maxima at λ max 250-252 nm (log ϵ 4.12-4.54).

Compounds I with 4-Cl, 4-Br and 4-NH₂ phenyl substituents show a red shift of 10-12 nm in the shoulder which could be attributed to the extension of the chromophore situated para to the triazole nucleus. On the other hand, due to the steric inhibition of the 2-Cl and 2-Br phenyl substituents, this shoulder is obscurred reflecting the probable inability of the ortho substituted substituents to achieve complete coplanarity with the 1,2,4-triazole nucleus. A similar conclusion was also observed [27]. Moreover, this shoulder is not observed in 5-phenylmethyl Ii derivative which could be due to lack of extended conjugation of the phenyl and the triazole rings. This shoulder is assigned to II → II* transition. The electronic spectra of compounds II showed maximum absorption at λ max 251-255 nm (log ϵ 4.16-4.32). This band is not largely affected by the introduction of the acyl group except for compound II ga which showed 14 nm bathochromic shift of the absorption maximum. Compounds IIh and IIi showed a shoulder at λ max 288 nm (log ϵ 4.03) and λ max 278 nm (log ϵ 4.10) respectively. The ultraviolet spectra of compounds IV showed only one maximum absorption at λ max 261-266 nm (log ϵ 4.07-4.44). It seems that the introduction of the 3-cyanomethylthio group resulted in the disappearance of the shoulder present in I and also a red shift (11-15 nm) at λ max 251 nm. This bathochromic shift suggests that compounds I and IV exist predominantly in the thione form. This is what reproted with similar systems [28].

Antimicrobial Activities of Compounds I-VIII.

The above compounds were tested for their antimicrobial activity by the agar dilution technique. The potassium 3-aroyldithiocarbazates and compounds I were studied in details [29] and it was found that the potassium 3-aroyldithiocarbazates show slight activity against A. niger. Compounds I showed a large activity against C. albicans and to a lesser extent against S. aureus. The activity of compounds I with the bromosubstituted phenyl group If-h is two to three times higher than that of the chloro substituted derivatives Id,e. Compounds of series II in which the amino group of triazoles I was modified and of series III-VIII with the thiol group of triazoles I modified were screened for their antimicrobial activity by the same method. The results [30] of these tests showed that compounds IIIga, IIIc, IVe are active against the fungi C. albi-

cans and A. niger and that compounds IVc,e,h are active against the bacteria S. aureus and M. phlei.

EXPERIMENTAL

All melting points were determined on an electrothermal melting point apparatus, and are uncorrected. Elemental analyses were performed by Prof. Dipl.-Ing., Dr. H. Malissa and G. Reuter, West Germany. Spectra were recorded with Pye-Unicam SP 1000 and Perkin-Elmer 580B Infrared Spectrophotometers (potassium bromide water technique) and Pye-Unicam SP8-100 visible and ultraviolet spectrophotometer (in ethanol). The 'H-nmr spectra were recorded on a varian T-60A spectrometer using tetramethylsilane (TMS) as an internal standard.

4-Amino-5-aryl-1,2,4-triazole-3-thiones I.

Following the method of Reid and Heindel [13], a mixture of potassium 3-aroyldithiocarbazate (0.1 mole), hydrazine hydrate (99%, 0.2 mole) and 10 ml of water was refluxed with stirring for 0.5-1.0 hour. The color of the reaction mixture changed to green, hydrogen sulfide evolved and a homogeneous solution resulted. Dilution with 500 ml of cold water and acidification with concentrated hydrochloric acid gave a white precipitate. This solid was filtered, washed three times with 50 ml of cold water and crystallized from ethanol (Table I).

4-Amino-1,2,4-triazole-3-thione.

This compound was prepared according to Beyer procedure [14]. A mixture of thiocarbazide (10.6 g, 0.1 mole) and 10 ml of 98-100% formic acid was refluxed for 5 min. A yellow solution was obtained which solidified upon cooling. The solid product was crystallized from diluted ethanol, yield 78%, mp 166-167° (lit [14] 167-168°); ir (potassium bromide): cm⁻¹ 3280, 3180, 1630, 1540; nmr (dimethylsulfoxide-d₆): (multiplicity, assignment) 14.00 (s, 1H, HNC=S), 8.38 (s, 1H, triazole H), 5.60 (s, 2H, NH₂).

4-Acylamino-5-aryl-1,2,4-triazole-3-thiones II.

The triazole I (0.01 mole) in 20 ml of pyridine was treated dropwise with an equimolar amount of the acid chloride at 0°C. The mixture, after standing overnight, was heated for 5-6 hours at 130°, cooled, diluted with water then acidified with hydrochloric acid. The precipitate formed was filtered and crystallized from ethanol-water mixture (Table I).

Bis(4-amino-5-aryl-1,2,4-triazol-3-ylthio)methanes (III).

The triazole I (0.01 mole) and 5.6 g (0.01 mole) potassium hydroxide were dissolved in water (30 ml). To this solution methylene iodide (0.04 mole) was added. The mixture was refluxed until a white solid precipitated (ca. 0.5-1.0 hour). Refluxing was continued for another 30 minutes after which the reaction mixture was cooled and the precipitate filtered and crystallized from ethanol or dimethyl formamide-water mixture (Table I).

4-Amino-5-aryl-3-cyanomethylthio-1,2,4-triazoles IV.

The triazole I (0.01 mole) dissolved in 20-30 ml of absolute ethanol was mixed with 1.2 ml (0.02 mole) of chloroacetonitrile and heated for 4 hours. The solvent was evaporated and the residue dissolved in 25 ml of water. Neutralization with sodium carbonate gave a precipitate which was filtered, washed with cold water (2 \times 20 ml), and crystallized from ethanol or ethanol-water mixture (Table I).

4-Amino-5-aryl-3-carbomethoxymethylthio-1,2,4-triazole V.

A solution of the triazoles I (0.01 mole) and 0.4 g (0.01 mole) of sodium hydroxide in 30 ml of absolute ethanol was refluxed for 0.5 hour. To this solution, methyl bromoacetate 1.53 g (0.01 mole) was added, and the resulting mixture refluxed for 4 hours. After cooling, the solution was poured on ice and the solid mass thus separated was crystallized from ethanol (Table I).

4-Amino-5-aryl-1,2,4-triazol-3-ylthio)acethydrazides VI.

A solution of V (0.01 mole) in 60-70 ml of absolute ethanol was refluxed

with 5 ml (0.01 mole) of hydrazine hydrate for 2 hours. The mixture was concentrated under vacuum. Upon cooling, a white solid separated which was then filtered and crystallized from ethanol (Table I).

1-[(4-Amino-5-aryl-1,2,4-triazol-3-ylthio)acetyl)-2-aroylhydrazines VII.

An ethanolic solution of the appropriate acid chloride (0.01 mole) was added to VI (0.01 mole) in 25 ml absolute ethanol. The mixture was refluxed for 5 hours. The solid material separated on cooling was filtered and crystallized from ethanol (Table I).

Arylmethylene(4-amino-5-aryl-1,2,4-triazol-3-ylthio)acethydrazones VIII.

A similar procedure was used as in the preparation of VII except using aromatic aldehydes instead of acid chlorides (Table I).

Acknowledgement.

This work is supported by Kuwait University Research Grant SCO16. We wish to thank Dr. M. A. Ghannoum (Department of Microbiology, Kuwait University) for performing the antimicrobial activity study. Our thanks are also extended to Prof. A. M. Kiwan for reading the manuscript and for his valuable suggestions.

REFERENCES AND NOTES

- [1] Part V. N. F. Eweiss, J. Heterocyclic Chem., 19, 273 (1982).
- [2] Present address 70 Gameat Ddewal Alarabia, Giza, Etypt.
- [3] N. F. Eweiss and A. Osman, J. Heterocyclic Chem., 17, 713 (1980).
- [4] M. A. Ghannoum, W. R. Bowman and M. Valmas, *Microbios*, 42, 211 (1985).
- [5] M. Kuranari and H. Takeucki, Japanese Patent, 21, 420 (1965); Chem. Abstr., 64, 2097h (1966).
- [6] P. D. Oja, U. S. Patent 3,183,241 (1965); Chem. Abstr., 65, 4305f (1966).
- [7] G. Thomas, D. V. Mehta, R. Tahilramani, D. Joy and P. K. Talwalker, J. Med. Chem., 14, 335 (1971); Chem. Abstr., 74, 141645d (1971).
- [8] W. L. Albrecht, U. S. Patent 3,954,984 (1976); Chem. Abstr., 85, 78173h (1976).
- [9] W. L. Albrecht and W. D. Jones, U. S. Patents 3,954,981 (1976) and 4,230,715 (1980); Chem. Abstr., 85, 177501V (1976), and Chem. Abstr., 94, 121552f (1981).

- [10] S. Singh, L. D. S. Yadav and H. Singh, *Bokin Bobai.*, **8**, 385 (1980); *Chem. Abstr.*, **94**, 103250b (1981).
- [11] M. K. Mody, A. K. Prasad, T. Ramalingam and P. B. Sattur, J. Indian Chem. Soc., 59, 769 (1982).
- [12] B. N. Goswami, J. C. S. Kataky and J. N. Baruah, J. Heterocyclic Chem., 21, 1225 (1984).
- [13] J. R. Reid and N. D. Heindel, J. Heterocyclic Chem., 13, 925 (1976).
- [14] H. Beyer, C. F. Kroeger and G. Busse, Ann. Chem., 637, 135 (1960).
 - [15] N. D. Heindel and J. R. Reid, J. Org. Chem., 45, 2479 (1980).
- [16] F. Kurzer and W. Wilkinson, J. Chem. Soc. C, 1218 (1969).
- [17] M. Kanaoka, J. Pharm. Soc. Japan, 76, 113 (1956); Chem. Abstr., 51, 3579b (1957).
- [18] L. P. Bellamy, "The Infrared Spectra of Complex Molecules", 3rd Ed, Chapman and Hall, London, 1975, [a], p 239, [b] p 294, [c] p 205.
- [19] W. Rudnicka and Z. Osmialowska, Acta. Pol. Pharm., 36, 411 (1979).
 - [20] E. Hoggarth, J. Chem. Soc., 4811 (1952).
- [21] S. V. Sokolov and I.Y. Postovskii, Zh. Obshch. Khim., 30, 1781 (1960); Chem. Abstr., 55, 7399d (1961).
- [22] H. Saikachi and M. Kanaoka, Yakugaku Zasshi, 82, 683 (1962); Chem. Abstr., 58, 45443C (1963).
 - [23] C. F. Kroger, E. Tenor and H. Beyer, Ann. Chem., 643, 121 (1961).
- [24] W. Rudnicka and J. Sawlewicz, Acta. Pol. Pharm., 35, 135 (1978); Chem. Abstr., 89, 215308e (1978).
- [25] H. B. Konig, W. Seifken and H. A. Offe, Chem. Ber., 87, 825 (1954); Chem. Abstr., 49, 9632b (1955).
- [26] V. H. Kulkarni, S. A. Patil, B. M. Badiger and S. M. Kudari, J. Indian Chem. Soc., 61, 713 (1984).
 - [27] K. T. Potts and R. M. Huseby, J. Org. Chem., 31, 3528 (1966).
- [28] J. Elguero, C. Marzin, A. R. Katritzky and P. Linda, "The Tautomerism of Heterocycles", Supplement I in "Advances in Heterocyclic Chemistry", A. R. Katritzky and A. J. Boulton, eds, Academic Press, New York, 1976, p 404-413.
- [29] M. A. Ghannoum, N. F. Eweiss, A. A. Bahajaj and M. A. Qureshi, *Microbios*, 37, 151 (1983).
- [30] M. A. Ghannoum, N. F. Eweiss and A. A. Bahajaj, unpublished results.